Five-diagonal Matrices and Zeros of Orthogonal Polynomials on the Unit Circle

نویسنده

  • M. J. Cantero
چکیده

It is shown that monic orthogonal polynomials on the unit circle are the characteristic polynomials of certain five-diagonal matrices depending on the Schur parameters. This result is achieved through the study of orthogonal Laurent polynomials on the unit circle. More precisely, it is a consequence of the five term recurrence relation obtained for these orthogonal Laurent polynomials, and the one to one correspondence established between them and the orthogonal polynomials on the unit circle. As an application, some results relating the behavior of the zeros of orthogonal polynomials and the location of Schur parameters are obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measures on the unit circle and unitary truncations of unitary operators

In this paper we obtain new results about the orthogonality measure of orthogonal polynomials on the unit circle, through the study of unitary truncations of the corresponding unitary multiplication operator, and the use of the five-diagonal representation of this operator. Unitary truncations on subspaces with finite co-dimension give information about the derived set of the support of the mea...

متن کامل

Orthogonal Polynomials on the Unit Circle with Verblunsky Coefficients Defined by the Skew-shift

I give an example of a family of orthogonal polynomials on the unit circle with Verblunsky coefficients given by the skew-shift for which the associated measures are supported on the entire unit circle and almost-every Aleksandrov measure is pure point. Furthermore, I show in the case of the two dimensional skew-shift the zeros of para-orthogonal polynomials obey the same statistics as an appro...

متن کامل

Minimal representations of unitary operators and orthogonal polynomials on the unit circle ∗

In this paper we prove that the simplest band representations of unitary operators on a Hilbert space are five-diagonal. Orthogonal polynomials on the unit circle play an essential role in the development of this result, and also provide a parametrization of such five-diagonal representations which shows specially simple and interesting decomposition and factorization properties. As an applicat...

متن کامل

1 6 Ju n 20 06 A matrix approach to the computation of quadrature formulas on the unit circle 1 Maŕıa

In this paper we consider a general sequence of orthogonal Laurent polynomials on the unit circle and we first study the equivalences between recurrences for such families and Szegő’s recursion and the structure of the matrix representation for the multiplication operator in Λ when a general sequence of orthogonal Laurent polynomials on the unit circle is considered. Secondly, we analyze the co...

متن کامل

Matrix methods for quadrature formulas on the unit circle. A survey

In this paper we give a survey of some results concerning the computation of quadrature formulas on the unit circle. Like nodes and weights of Gauss quadrature formulas (for the estimation of integrals with respect to measures on the real line) can be computed from the eigenvalue decomposition of the Jacobi matrix, Szegő quadrature formulas (for the approximation of integrals with respect to me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001